Yang–Baxterization and Hamiltonian

نویسندگان

  • Yong Zhang
  • Louis H. Kauffman
چکیده

It is fundamental to view unitary braiding operators describing topological entanglements as universal quantum gates for quantum computation. This paper derives the unitary solution of the Quantum Yang–Baxter equation via Yang–Baxterization and constructs the Hamiltonian responsible for the timeevolution of the unitary braiding operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Quantum Gate , Yang – Baxterization and Hamiltonian

It is fundamental to view unitary braiding operators describing topological entangle-ments as universal quantum gates for quantum computation. This paper derives a unitary solution of the quantum Yang–Baxter equation via Yang–Baxterization and constructs the Hamiltonian responsible for the time-evolution of the unitary braiding operator.

متن کامل

GHZ States, Almost-Complex Structure and Yang-Baxter Equation

Recent study suggests that there are natural connections between quantum information theory and the Yang–Baxter equation. In this paper, in terms of the generalized almost-complex structure and with the help of its algebra, we define the generalized Bell matrix to yield all the GHZ states from the product base, prove it to form a unitary braid representation and present a new type of solution o...

متن کامل

A representation of extra-special 2-group, entanglement, and Berry phase of two qubits in Yang-Baxter system

In this paper we show another representations of extra-special 2-groups. Based on this new representation, we infer a M matrix which obeys the extra-special 2-groups algebra relations. We also derive a unitary R̆(θ, φ)matrix from theM using the Yang-Baxterization process. A Hamiltonian for the two qubits is constructed from the unitary R̆(θ, φ) matrix. In this way, we study the Berry phase and en...

متن کامل

2 00 5 On the KK̄ system as two - kaons system

The time evolution of the K ¯ K system as a two-qubit system is given.The effect which is interpreted as CP violation in neutral kaon decays is explained via violation of quantum correlations during time evolution of the K ¯ K system as two-kaons system and description is via Yang-Baxterization and unitary time dependent R-matrices to construct Hamiltonian, determining the time evolution of two...

متن کامل

ar X iv : 0 90 3 . 37 11 v 4 [ qu an t - ph ] 9 A pr 2 00 9 Temperley - Lieb Algebra , Yang - Baxterization and universal Gate

Abstract. A method of constructing n × n matrix solutions(with n matrix elements) of Temperley-Lieb algebra relation is presented in this paper. The single loop of these solutions are d = √ n. Especially, a 9×9−matrix solution with single loop d= √ 3 is discussed in detail. An unitary Yang-Baxter R̆(θ, q1, q2) matrix is obtained via the Yang-Baxterization process. The entanglement property and g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008